Qualifying Exam. Complex Analysis. Spring 2019

Problem 1. Does there exists a function f holomorphic in the unit disk and such that

$$
f\left(2^{-2 n}\right)=2^{-2 n} \quad \text { and } \quad f\left(2^{-(2 n-1)}\right)=-2^{-(2 n-1)}
$$

for all positive integers n ?

Problem 2. Let f be a holomorphic function that maps the unit disc into itself. Suppose that $w \in \mathbb{D}$ and $f(w)=0$. Prove that

$$
\left|f^{\prime}(w)\right| \leq \frac{1}{1-|w|^{2}}
$$

Problem 3. Does there exist an entire function f such that $\operatorname{Re} f(z)=(\operatorname{Im} z)^{4}, \quad z \in \mathbb{C} ?$

Problem 4. Evaluate the integral

$$
\int_{C} \frac{\zeta^{2}}{(1-2 \zeta)^{2}(2+3 \mathrm{i} \zeta)} d \zeta
$$

where C is the unit circle oriented counter clockwise.

Problem 5. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin x}{x\left(1+x^{2}\right)} d x
$$

